

ON THE NUMBER OF PRIMITIVE PYTHAGOREAN SEXTUPLES

Werner Hürlimann

Received March 23, 2016

Abstract

We express the number of distinct primitive Pythagorean sextuples in terms of thirteen components. These are the total number of primitive representations of a square as a sum of five squares (counting zeros, permutations and sign changes), the number of distinct primitive Pythagorean quadruples and quintuples, the number of distinct primitive squares quaternary representations $w^2 + x^2 + y^2 + 2z^2 = t^2$, the number of distinct primitive squares representations by the three ternary quadratic forms $x^2 + by^2 + cz^2$, $(b, c) \in \{(1, 3), (2, 2), (1, 2)\}$, as well as the number of distinct primitive squares representations by the six binary quadratic forms

 $ax^2 + by^2$, $(a, b) \in \{(1, 4), (2, 3), (1, 3), (2, 2), (1, 2), (1, 1)\}.$

Explicit formulas for each component are provided, and the obtained summary counting function is illustrated numerically. In particular, it is shown that the Pythagorean sextuple Diophantine equation $v^2 + w^2 + x^2 + y^2 + z^2 = t^2$ has primitive solutions without zeros for all $t \ge 4$.

Keywords and phrases: diophantine equation, sum of squares, quaternary quadratic form, ternary quadratic form, arithmetic function, twisted Euler function.

ISSN: 2231-1831

Pioneer Journal of Algebra, Number Theory and its Applications

